NAG Fortran Library Routine Document

F04JLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F04JLF solves a real general Gauss-Markov linear (least-squares) model problem.

2 Specification

```
SUBROUTINE F04JLF(M, N, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, IFAIL)INTEGERM, N, P, LDA, LDB, LWORK, IFAILrealA(LDA,*), B(LDB,*), D(*), X(*), Y(*), WORK(*)
```

3 Description

This routine solves the real general Gauss-Markov linear model (GLM) problem

 $\underset{r}{\text{minimize}} \|y\|_2 \quad \text{subject to} \quad d = Ax + By$

where A is an m by n matrix, B is an m by p matrix and d is an m element vector. It is assumed that $n \le m \le n + p$, $\operatorname{rank}(A) = n$ and $\operatorname{rank}(E) = m$, where $E = (A \)B$. Under these assumptions, the problem has a unique solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization of the matrices A and B.

In particular, if the matrix B is square and nonsingular, then the GLM problem is equivalent to the weighted linear least-squares problem

 $\underset{x}{\text{minimize}} \|B^{-1}(d - Ax)\|_2.$

F04JLF is based on the LAPACK routine SGGGLM/DGGGLM, see Anderson et al. (1999).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia

Anderson E, Bai Z and Dongarra J (1991) Generalized *QR* factorization and its applications *LAPACK Working Note No. 31* University of Tennessee, Knoxville

5 Parameters

1: M – INTEGER

On entry: m, the number of rows of the matrices A and B. Constraint: M > 0.

2: N – INTEGER

On entry: n, the number of columns of the matrix A. Constraint: $0 \le N \le M$. Input

Input

3:	P – INTEGER Input
	On entry: p, the number of columns of the matrix B.
	Constraint: $P \ge M - N$.
4:	A(LDA,*) – <i>real</i> array Input/Output
	Note: the second dimension of the array A must be at least $max(1, N)$.
	On entry: the m by n matrix A .
	On exit: A is overwritten.
5:	LDA – INTEGER Input
	On entry: the first dimension of the array A as declared in the (sub)program from which F04JLF is called.
	Constraint: $LDA \ge max(1, M)$.
6:	B(LDB,*) – <i>real</i> array Input/Output
	Note: the second dimension of the array B must be at least $max(1, P)$.
	On entry: the m by p matrix B .
	On exit: B is overwritten.
7:	LDB – INTEGER Input
	On entry: the first dimension of the array B as declared in the (sub)program from which F04JLF is called.
	Constraint: $LDB \ge max(1, M)$.
8:	D(*) – <i>real</i> array Input/Output
	Note: the dimension of the array D must be at least $max(1, M)$.
	On entry: the left-hand side vector d of the GLM equation.
	On exit: D is overwritten.
9:	X(*) – <i>real</i> array Output
	Note: the dimension of the array X must be at least $max(1, N)$.
	On exit: the solution vector x of the GLM problem.
10:	Y(*) – <i>real</i> array Output
	Note: the dimension of the array Y must be at least $max(1, P)$.
	On exit: the solution vector y of the GLM problem.
11:	WORK(*) – <i>real</i> array Workspace
	Note: the dimension of the array WORK must be at least $max(1, LWORK)$.
	<i>On exit:</i> if $IFAIL = 0$, $WORK(1)$ contains the minimum value of LWORK required for optimum performance.

Input

On entry: the dimension of the array WORK as declared in the subprogram from which F04JLF is called unless LWORK = -1, in which case a workspace query is assumed and the routine only calculates the optimal dimension of WORK (using the formula given below).

Suggested value: for optimum performance LWORK should be at least $N + \min(M, P) + \max(M, P) \times nb$, where nb is the **blocksize**.

Constraint: LWORK $\geq \max(1, M + N + P)$ or LWORK = -1.

13: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

7 Accuracy

For an error analysis, see Anderson et al. (1991).

8 **Further Comments**

When $p = m \ge n$, the total number of floating-point operations is approximately $\frac{2}{3}(2m^3 - n^3) + 4nm^2$; when p = m = n, the total number of floating-point operations is approximately $\frac{14}{3}m^3$.

9 Example

To solve the weighted least-squares problem

$$\underset{x}{\text{minimize}} \|B^{-1}(d - Ax)\|_2$$

where

$$B = \begin{pmatrix} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 5.0 \end{pmatrix}, \quad d = \begin{pmatrix} 1.31 \\ -4.01 \\ 5.56 \\ 3.22 \end{pmatrix} \text{ and } A = \begin{pmatrix} -0.57 & -1.28 & -0.39 \\ -1.93 & 1.08 & -0.31 \\ 2.30 & 0.24 & -0.40 \\ -0.02 & 1.03 & -1.43 \end{pmatrix}.$$

9.1 Program Text

Note: the listing of the example program presented below uses *bold italicised* terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
F04JLF Example Program Text.
      Mark 20 Revised. NAG Copyright 2001.
*
*
      .. Parameters ..
                        NIN, NOUT
      INTEGER
      PARAMETER
                        (NIN=5,NOUT=6)
      INTEGER
                        NMAX, MMAX, PMAX, LDA, LDB, LWORK
      PARAMETER
                        (NMAX=10,MMAX=10,PMAX=10,LDA=MMAX,LDB=MMAX,
     +
                        LWORK=NMAX+MMAX+64*(MMAX+PMAX))
      .. Local Scalars ..
*
      INTEGER
                        I, IFAIL, J, M, N, P
      .. Local Arrays ..
*
      real
                        A(LDA,NMAX), B(LDB,PMAX), D(MMAX), WORK(LWORK),
                        X(NMAX), Y(PMAX)
     +
      .. External Subroutines ..
      EXTERNAL
                        F04JLF
      .. Executable Statements ..
      WRITE (NOUT, *) 'F04JLF Example Program Results'
      Skip heading in data Ûle
      READ (NIN, *)
      READ (NIN,*) M, N, P
      IF (M.LE.MMAX .AND. N.LE.NMAX .AND. P.LE.PMAX) THEN
*
         Read A, B and D from data Ûle
*
*
         READ (NIN, \star) ((A(I,J), J=1,N), I=1,M)
         READ (NIN,*) ((B(I,J),J=1,P),I=1,M)
         READ (NIN, \star) (D(I), I=1, M)
*
*
         Solve the weighted least-squares problem
*
         minimize ||inv(B)*(D-A*X)|| (in the 2-norm)
*
         IFAIL = 0
*
         CALL F04JLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
*
         Print least-squares solution
*
*
         WRITE (NOUT, *)
         WRITE (NOUT, *) 'Least-squares solution'
         WRITE (NOUT, 99999) (X(I), I=1, N)
      END IF
      STOP
99999 FORMAT (1X,8F9.4)
      END
```

9.2 Program Data

F04JLF Example Program Data 4 3 4 :Values of M, N and P -0.57 -1.28 -0.39 -1.93 1.08 -0.31 -0.40 2.30 0.24 -0.02 1.03 -1.43 :End of matrix A 0.00 0.00 0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 5.00 :End of matrix B 1.31 -4.01 5.56 :End of D 3.22

9.3 Program Results

FO4JLF Example Program Results

```
Least-squares solution
2.0000 -1.0000 -3.0000
```